首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16016篇
  免费   1860篇
  国内免费   565篇
化学   4760篇
晶体学   21篇
力学   1107篇
综合类   93篇
数学   7131篇
物理学   5329篇
  2024年   11篇
  2023年   154篇
  2022年   163篇
  2021年   355篇
  2020年   440篇
  2019年   436篇
  2018年   312篇
  2017年   357篇
  2016年   603篇
  2015年   482篇
  2014年   757篇
  2013年   1266篇
  2012年   743篇
  2011年   800篇
  2010年   720篇
  2009年   970篇
  2008年   1132篇
  2007年   1154篇
  2006年   947篇
  2005年   710篇
  2004年   601篇
  2003年   632篇
  2002年   611篇
  2001年   470篇
  2000年   484篇
  1999年   405篇
  1998年   384篇
  1997年   275篇
  1996年   223篇
  1995年   196篇
  1994年   200篇
  1993年   169篇
  1992年   161篇
  1991年   106篇
  1990年   96篇
  1989年   95篇
  1988年   107篇
  1987年   74篇
  1986年   70篇
  1985年   111篇
  1984年   84篇
  1983年   26篇
  1982年   53篇
  1981年   56篇
  1980年   55篇
  1979年   44篇
  1978年   38篇
  1977年   35篇
  1976年   31篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
Trace element speciation in biomedical and environmental science has gained increasing attention over the past decade as researchers have begun to realize its importance in toxicological studies. Several nanomaterials, including titanium dioxide nanoparticles (nano-TiO2), carbon nanotubes (CNTs), and magnetic nanoparticles (MNPs), have been used as sorbents to separate and preconcentrate trace element species prior to detection through mass spectrometry or optical spectroscopy. Recently, these nanomaterial-based speciation techniques have been integrated with microfluidics to minimize sample and reagent consumption and simplify analyses. This review provides a critical look into the present state and recent applications of nanomaterial-based microanalytical systems in the speciation of trace elements. The adsorption and preconcentration efficiencies, sample volume requirements, and detection limits of these nanomaterial-based speciation techniques are detailed, and their applications in environmental and biological analyses are discussed. Current perspectives and future trends into the increasing use of nanomaterial-based microfluidic techniques for trace element speciation are highlighted.  相似文献   
103.
A selective review of the question of how repulsive electron correlations might give rise to off‐diagonal long‐range order (ODLRO) in high‐temperature superconductors is presented. The article makes detailed explanations of the relevance to superconductivity of reduced electronic density matrices and how these can be used to understand whether ODLRO might arise from Coulombic repulsions in strongly correlated electronic systems. Time‐reversed electron pairs on alternant Cuprate and the iron‐based pnictide and chalcogenide lattices may have a weak long‐range attractive tail and much stronger short‐range repulsive Coulomb interaction. The long‐range attractive tail may find its origin in one of the many suggested proposals for high‐Tc superconductivity and thus has an uncertain origin. A phenomenological Hamiltonian is invoked whose model parameters are obtained by fitting to experimental data. A detailed summary is given of the arguments that such interacting electrons can cooperate to produce a superconducting state in which time‐reversed pairs of electrons effectively avoid the repulsive hard‐core of the Coulomb interaction but reside on average in the attractive well of the long‐range potential. Thus, the pairing of electrons itself provides an enhanced screening mechanism. The alternant lattice structure is the key to achieving robust high‐temperature superconductivity with dx2‐y2 or sign alternating s‐wave or s± condensate symmetries in cuprates and iron‐based compounds. Some attention is also given to the question first raised by Leggett as to where the Coulombic energy is saved in the superconducting transition in cuprates. A mean‐field‐type model in which the condensate density serves as an order parameter is discussed. Many of the observed trends in the thermal properties of cuprate superconductors are reproduced giving strong support for the proposed model for high‐temperature superconductivity in such strongly correlated electronic systems. © 2015 Wiley Periodicals, Inc.  相似文献   
104.
A series of photoresponsive‐group‐containing nanorings hosts with 12~14 Å in diameter is designed by introducing different number of azo groups as the structural composition units. And the host–guest interactions between fullerene C60 and those nanoring hosts were investigated theoretically at M06‐2X/6‐31G(d)//M06‐L/MIDI! and wB97X‐D/6‐31G(d) levels. Analysis on geometrical characteristics and host–guest binding energies revealed that the designed nanoring molecule (labeled as 7 ) which is composed by seven azo groups and seven phenyls is the most feasible host for encapsulation of C60 guest among all candidates. Moreover, inferring from the simulated UV‐vis‐NIR spectroscopy, the C60 guest could be facilely released from the cavity of the host 7 via configuration transformation between trans‐form and cis‐form of the host under the 563 nm photoirradiation. Additionally, the frontier orbital features, weak interaction regions, infrared, and NMR spectra of the C60@7 host–guest complex have also been investigated theoretically. © 2015 Wiley Periodicals, Inc.  相似文献   
105.
This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH‐sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH–t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di‐copper(II) bistren complex in a single run, in a completely automatic experiment.  相似文献   
106.
The noncovalent interactions between 4′, 6‐diamidino‐2‐phenylindole (DAPI) and sulfobutylether β‐cyclodextrin (SBE7β‐CD) are evaluated by using photochemical measurements and compared with that of native β‐CD. Contrasting recognition behavior and intriguing modulations in the photochemical behavior of DAPI were observed. In particular, a large enhancement in the fluorescence emission and excited‐state lifetime were seen upon binding to SBE7β‐CD, with the SBE7β‐CD inclusion complex being approximately 1000 times stronger than that of β‐CD. The ensuing fluorescence “turn on” was demonstrated to be responsive to chemical stimuli, such as metal ions and adamantylanmine (AD). Upon addition of Ca2+/AD, nearly quantitative dissociation of the complex was established to regenerate the free dye and result in fluorescence “turn off”. The SO3? groups are believed to be critical for the strong and selective binding of the chromophore and the stimuli‐responsive tuning. This is as an important design criterion for the optimization of host–guest properties through supramolecular association, which is relevant for drug‐delivery applications.  相似文献   
107.
In this study, two structural isomers α‐PBT and β‐PBT, which only differ in the phenyl substituent position on the quinoline chromophore, have been designed and successfully synthesized. The influences of substituent position on the film morphology and the storage performance of the devices were investigated. Both molecules employed in the memory devices exhibited same nonvolatile binary (write‐once‐read‐many‐times; WORM) characteristics, but the switch threshold voltage (Vth) of the β‐PBT‐based device was clearly lower than that of the α‐PBT‐based device. Simulation results demonstrate that the variation of the phenyl substituent position led to different intermolecular stacking styles and thus to varied grain sizes for each film morphology. This work illustrates that altering the phenyl substituent position on the molecular backbone could improve the quality of the film morphology and reduce power consumption, which is good for the rational design of future advanced organic memory devices (OMDs).  相似文献   
108.
The efficient synthesis of calix[6]cryptothiourea 6 was achieved through a two‐step sequence that involves a key [1+1] macrocyclization step. It was shown by NMR spectroscopy that this heteroditopic receptor can bind zwitterions in protic media with an outstanding selectivity for β‐alanine betaine G5 , which is likely due to a high complementarity between the two partners. This result constitutes a rare example of cavity complexation of a zwitterion by a calix[6]arene. In comparison with the parent urea‐based receptors, 6 behaves as a much more efficient host for betaines. This strengthening of the binding properties is due to the better preorganization of the tripodal hydrogen‐bonding cap as well as to the higher acidity of the thiourea groups and their poor ability to self‐associate. Remarkably, host 6 is able to perform solid–liquid as well as liquid–liquid extraction of G5 . Finally, 6 provides an excellent structural model for the binding site of glycine betaine G4 encountered in natural systems.  相似文献   
109.
110.
The complexation of metal cations into a host–guest situation is particularly well exemplified by [2.2.2]paracyclophane and AgI, which leads to a strong cation–π interaction with a specific face of the host molecule. Through this study we sought a deeper understanding of the effects the metal center has on the NMR spectroscopic properties of the prototypical organic host, generating theoretical reasons for the observed experimental results with an aim to determine the role of the cation–π interaction in a host–guest scenario. From an analysis of certain components of the induced magnetic field and the 13C NMR shielding tensor under its own principal axis system (PAS), the local and overall magnetic behavior can be clearly described. Interestingly, the magnetic response of such a complex exhibits a large axis-dependent behavior, which leads to an overall shielding effect for the coordinating carbon atoms and a deshielding effect for the respective uncoordinated counterparts, evidence that complements previous experimental results. This proposed approach can be useful to gain further insight into the local and overall variation of NMR shifts for host–guest pairs involving both inorganic and organic hosts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号